Stochastic Time Series with Strong, Correlated Measurement Noise: Markov Analysis in N Dimensions

An extension and generalization of a recently presented approach for the analysis of Langevin-type stochastic processes in the presence of strong measurement noise is presented. For a stochastic process in N dimensions which is superimposed with strong, exponentially correlated, Gaussian distributed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of statistical physics 2013-09, Vol.152 (6), p.1145-1169
1. Verfasser: Lehle, Bernd
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An extension and generalization of a recently presented approach for the analysis of Langevin-type stochastic processes in the presence of strong measurement noise is presented. For a stochastic process in N dimensions which is superimposed with strong, exponentially correlated, Gaussian distributed, measurement noise it is possible to extract the strength and the correlation functions of the noise as well as polynomial approximations of the drift and diffusion functions of the underlying process.
ISSN:0022-4715
1572-9613
DOI:10.1007/s10955-013-0803-z