A Lower Bound for the Lyapounov Exponents of the Random Schrödinger Operator on a Strip
We consider the random Schrödinger operator on a strip of width W , assuming the site distribution of bounded density. It is shown that the positive Lyapounov exponents satisfy a lower bound roughly exponential in − W for W →∞. The argument proceeds directly by establishing Green’s function decay, b...
Gespeichert in:
Veröffentlicht in: | Journal of statistical physics 2013-10, Vol.153 (1), p.1-9 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider the random Schrödinger operator on a strip of width
W
, assuming the site distribution of bounded density. It is shown that the positive Lyapounov exponents satisfy a lower bound roughly exponential in −
W
for
W
→∞. The argument proceeds directly by establishing Green’s function decay, but does not appeal to Furstenberg’s random matrix theory on the strip. One ingredient involved is the construction of ‘barriers’ using the random Schrödinger operator theory on
. |
---|---|
ISSN: | 0022-4715 1572-9613 |
DOI: | 10.1007/s10955-013-0821-x |