A Lower Bound for the Lyapounov Exponents of the Random Schrödinger Operator on a Strip

We consider the random Schrödinger operator on a strip of width W , assuming the site distribution of bounded density. It is shown that the positive Lyapounov exponents satisfy a lower bound roughly exponential in − W for W →∞. The argument proceeds directly by establishing Green’s function decay, b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of statistical physics 2013-10, Vol.153 (1), p.1-9
1. Verfasser: Bourgain, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the random Schrödinger operator on a strip of width W , assuming the site distribution of bounded density. It is shown that the positive Lyapounov exponents satisfy a lower bound roughly exponential in − W for W →∞. The argument proceeds directly by establishing Green’s function decay, but does not appeal to Furstenberg’s random matrix theory on the strip. One ingredient involved is the construction of ‘barriers’ using the random Schrödinger operator theory on .
ISSN:0022-4715
1572-9613
DOI:10.1007/s10955-013-0821-x