mth-Root Randers change of a Finsler metric
In this paper, we introduce a mth-root Randers changed Finsler metric as [bar.L](x, y) = L(x, y) + [beta](x, y), where [MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII] is a mth-root metric and [beta]-is one form. Further we obtained the relation between the v- and hv-curvature tensor of mth-root...
Gespeichert in:
Veröffentlicht in: | International journal of mathematical combinatorics 2013-03, Vol.1, p.38 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we introduce a mth-root Randers changed Finsler metric as [bar.L](x, y) = L(x, y) + [beta](x, y), where [MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII] is a mth-root metric and [beta]-is one form. Further we obtained the relation between the v- and hv-curvature tensor of mth-root Finsler space and its mth-root Randers changed Finsler space and obtained some theorems for its S3 and S4-likeness of Finsler spaces and when this changed Finsler space will be Berwald space (resp. Landsberg space). Also we obtain T-tensor for the mth-root Randers changed Finsler space [[bar.F].sup.n]. Key Words: Randers change, mth-root metric, Berwald space, Landsberg space, S3 and S4-like Finsler space. AMS(2010): 53B40, 53C60 |
---|---|
ISSN: | 1937-1055 |