Forecasting gold price changes by using adaptive network fuzzy inference system
Developing a precise and accurate model of gold price is critical to assets management because of its unique features. In this paper, adaptive neuro-fuzzy inference system (ANFIS) and artificial neural network (ANN) model have been used for modeling the gold price, and compared with the traditional...
Gespeichert in:
Veröffentlicht in: | Journal of business economics and management 2012-11, Vol.13 (5), p.994-1010 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Developing a precise and accurate model of gold price is critical to assets management because of its unique features. In this paper, adaptive neuro-fuzzy inference system (ANFIS) and artificial neural network (ANN) model have been used for modeling the gold price, and compared with the traditional statistical model of ARIMA (autoregressive integrated moving average). The three performance measures, the coefficient of determination (R 2), root mean squared error (RMSE), mean absolute error (MAE), are utilized to evaluate the performances of different models developed. The results show that the ANFIS model outperforms other models (i.e. ANN and ARIMA model), in terms of different performance criteria during the training and validation phases. Sensitivity analysis showed that the gold price changes are highly dependent upon the values of silver price and oil price. |
---|---|
ISSN: | 1611-1699 2029-4433 |
DOI: | 10.3846/16111699.2012.683808 |