Relative importance of different secondary successional pathways in an Alaskan boreal forest
Postfire succession in the Alaskan boreal forest follows several different pathways, the most common being self-replacement and species-dominance relay. In self-replacement, canopy-dominant tree species replace themselves as the postfire dominants. It implies a relatively unchanging forest compositi...
Gespeichert in:
Veröffentlicht in: | Canadian journal of forest research 2008-07, Vol.38 (7), p.1911-1923 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Postfire succession in the Alaskan boreal forest follows several different pathways, the most common being self-replacement and species-dominance relay. In self-replacement, canopy-dominant tree species replace themselves as the postfire dominants. It implies a relatively unchanging forest composition through time maintained by trees segregated within their respective, ecophysiological niches on an environmentally complex landscape. In contrast, species-dominance relay involves the simultaneous, postfire establishment of multiple tree species, followed by later shifts in canopy dominance. It implies that stand compositions vary with time since last fire. The relative frequencies of these and other successional pathways are poorly understood, despite their importance in determining the species mosaic of the present forest and their varying, potential responses to climate changes. Here we assess the relative frequencies of different successional pathways by modeling the relationship between stand type, solar insolation, and altitude;; by describing how stand age relates to species composition;; and by inferring successional trajectories from stand understories. Results suggest that >70% of the study forest is the product of self-replacement, and tree distributions are controlled mainly by the spatial distribution of solar insolation and altitude, not by time since last fire. As climate warms over the coming decades, deciduous trees will invade cold sites formerly dominated by black spruce, and increased fire frequency will make species-dominance relay even rarer. |
---|---|
ISSN: | 0045-5067 1208-6037 |
DOI: | 10.1139/X08-039 |