Minnesota-type adaptive hierarchical priors for large Bayesian VARs

Large Bayesian VARs with stochastic volatility are increasingly used in empirical macroeconomics. The key to making these highly parameterized VARs useful is the use of shrinkage priors. We develop a family of priors that captures the best features of two prominent classes of shrinkage priors: adapt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of forecasting 2021-07, Vol.37 (3), p.1212-1226
1. Verfasser: Chan, Joshua C.C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Large Bayesian VARs with stochastic volatility are increasingly used in empirical macroeconomics. The key to making these highly parameterized VARs useful is the use of shrinkage priors. We develop a family of priors that captures the best features of two prominent classes of shrinkage priors: adaptive hierarchical priors and Minnesota priors. Like adaptive hierarchical priors, these new priors ensure that only ‘small’ coefficients are strongly shrunk to zero, while ‘large’ coefficients remain intact. At the same time, these new priors can also incorporate many useful features of the Minnesota priors such as cross-variable shrinkage and shrinking coefficients on higher lags more aggressively. We introduce a fast posterior sampler to estimate BVARs with this family of priors—for a BVAR with 25 variables and 4 lags, obtaining 10,000 posterior draws takes about 3 min on a standard desktop computer. In a forecasting exercise, we show that these new priors outperform both adaptive hierarchical priors and Minnesota priors.
ISSN:0169-2070
1872-8200
DOI:10.1016/j.ijforecast.2021.01.002