Nowcasting GDP using machine-learning algorithms: A real-time assessment

Can machine-learning algorithms help central banks understand the current state of the economy? Our results say yes! We contribute to the emerging literature on forecasting macroeconomic variables using machine-learning algorithms by testing the nowcast performance of common algorithms in a full ‘re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of forecasting 2021-04, Vol.37 (2), p.941-948
Hauptverfasser: Richardson, Adam, van Florenstein Mulder, Thomas, Vehbi, Tuğrul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Can machine-learning algorithms help central banks understand the current state of the economy? Our results say yes! We contribute to the emerging literature on forecasting macroeconomic variables using machine-learning algorithms by testing the nowcast performance of common algorithms in a full ‘real-time’ setting—that is, with real-time vintages of New Zealand GDP growth (our target variable) and real-time vintages of around 600 predictors. Our results show that machine-learning algorithms are able to significantly improve over a simple autoregressive benchmark and a dynamic factor model. We also show that machine-learning algorithms have the potential to add value to, and in one case improve on, the official forecasts of the Reserve Bank of New Zealand.
ISSN:0169-2070
1872-8200
DOI:10.1016/j.ijforecast.2020.10.005