Just-In-Time Vehicle Routing for In-House Part Feeding to Assembly Lines
This paper deals with the problem of routing in-house transport vehicles that feed parts to workstations in assembly plants or workshops just in time. The capacitated vehicles, typically so-called tow trains, perform their assigned route cyclically without break and provide each station with the exa...
Gespeichert in:
Veröffentlicht in: | Transportation science 2018-05, Vol.52 (3), p.657-672 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper deals with the problem of routing in-house transport vehicles that feed parts to workstations in assembly plants or workshops just in time. The capacitated vehicles, typically so-called tow trains, perform their assigned route cyclically without break and provide each station with the exact quantity of parts required until the next arrival of the vehicle. Hence, the demand of each station depends on the duration of the route serving the station: The longer the route duration, the less frequently the station is visited and the higher its demand. The goal is to minimize first the number of vehicles and second the total route duration, while respecting given minimum service frequencies at the stations. We provide a mathematical formulation of this novel problem and address it by means of a large neighborhood search. The algorithm is able to solve realistic instances in acceptable time and vastly outperforms a default solver. We discuss two variants of the problem, one in which split deliveries to stations are allowed and another assuming that all stations lie on a straight line. Finally, we investigate the extent to which assuming constant demand rates may lead to problems during the day-to-day operations of the part-feeding system, where demands are not necessarily constant. |
---|---|
ISSN: | 0041-1655 1526-5447 |
DOI: | 10.1287/trsc.2018.0824 |