A Generalization of the Perfect Graph Theorem Under the Disjunctive Index

In this paper, we relate antiblocker duality between polyhedra, graph theory, and the disjunctive procedure. In particular, we analyze the behavior of the disjunctive procedure over the clique relaxation, ( G ), of the stable set polytope in a graph G , and the one associated to its complementary gr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics of operations research 2002-08, Vol.27 (3), p.460-469
Hauptverfasser: Aguilera, Nestor E, Escalante, Mariana S, Nasini, Garaeila L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we relate antiblocker duality between polyhedra, graph theory, and the disjunctive procedure. In particular, we analyze the behavior of the disjunctive procedure over the clique relaxation, ( G ), of the stable set polytope in a graph G , and the one associated to its complementary graph, ( ). We obtain a generalization of the Perfect Graph Theorem, proving that the disjunctive indices of ( G ) and ( ) always coincide.
ISSN:0364-765X
1526-5471
DOI:10.1287/moor.27.3.460.309