A Generalization of the Perfect Graph Theorem Under the Disjunctive Index
In this paper, we relate antiblocker duality between polyhedra, graph theory, and the disjunctive procedure. In particular, we analyze the behavior of the disjunctive procedure over the clique relaxation, ( G ), of the stable set polytope in a graph G , and the one associated to its complementary gr...
Gespeichert in:
Veröffentlicht in: | Mathematics of operations research 2002-08, Vol.27 (3), p.460-469 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we relate antiblocker duality between polyhedra, graph theory, and the disjunctive procedure. In particular, we analyze the behavior of the disjunctive procedure over the clique relaxation, ( G ), of the stable set polytope in a graph G , and the one associated to its complementary graph, ( ). We obtain a generalization of the Perfect Graph Theorem, proving that the disjunctive indices of ( G ) and ( ) always coincide. |
---|---|
ISSN: | 0364-765X 1526-5471 |
DOI: | 10.1287/moor.27.3.460.309 |