Evaluation of the evolutionary genetics and population structure of Culex pipiens pallens in Shandong province, China based on knockdown resistance

Mosquitoes are important vectors for a range of diseases, contributing to high rates of morbidity and mortality in the human population. Culex pipiens pallens is dominant species of Culex mosquito in northern China and a major vector for both West Nile virus and Bancroftian filariasis. Insecticide a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC genomics 2023-03, Vol.24 (1)
Hauptverfasser: Zang, Chuanhui, Wang, Xuejun, Cheng, Peng, Liu, Lijuan, Guo, Xiuxia, Wang, Haifang, Lou, Ziwei, Lei, Jingjing, Wang, Wenqian, Wang, Yiting, Gong, Maoqing, Liu, Hongmei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mosquitoes are important vectors for a range of diseases, contributing to high rates of morbidity and mortality in the human population. Culex pipiens pallens is dominant species of Culex mosquito in northern China and a major vector for both West Nile virus and Bancroftian filariasis. Insecticide application were largely applied to control the mosquito-mediated spread of these diseases, contributing to increasing rates of resistance in the mosquito population. The voltage-gated sodium channel (Vgsc) gene is the target site of pyrethroids, and mutations in this gene cause knockdown resistance (kdr). While these kdr mutations are known to be critical to pyrethroid resistance, their evolutionary origins remain poorly understood. Clarifying the origins of these mutations is potential to guide further vector control and disease prevention efforts. Accordingly, the present study was designed to study the evolutionary genetics of kdr mutations and their association with the population structure of Cx. p. pallens in Shandong province, China. Adult Culex females were collected from Shandong province and subjected to morphological identification under a dissection microscope. Genomic DNA were extracted from the collected mosquitoes, the Vgsc gene were amplified via PCR and sequenced to assess kdr allele frequencies, intron polymorphisms, and kdr codon evolution. In addition, population genetic diversity and related population characteristics were assessed by amplifying and sequencing the mitochondrial cytochrome C oxidase I (COI) gene. Totally, 263 Cx. p. pallens specimens were used for DNA barcoding and sequencing analyses to assess kdr allele frequencies in nine Culex populations. The kdr codon L1014 in the Vgsc gene identified two non-synonymous mutations (L1014F and L1014S) in the analyzed population. These mutations were present in the eastern hilly area and west plain region of Shandong Province. However, only L1014F mutation was detected in the southern mountainous area and Dongying city of Shandong Province, where the mutation frequency was low. Compared to other cities, population in Qingdao revealed significant genetic differentiation. Spatial kdr mutation patterns are likely attributable to some combination of prolonged insecticide-mediated selection coupled with the genetic isolation of these mosquito populations. These data suggest that multiple kdr alleles associated with insecticide resistance are present within the Cx. p. pallens populations of Shan
ISSN:1471-2164
1471-2164
DOI:10.1186/s12864-023-09243-2