Predicting compound-protein interaction using hierarchical graph convolutional networks

Motivation Experiments using different datasets show the improvement of our model compared to other GCN-based methods and a sequence based method, DeepDTA, in predicting compound-protein interactions. Each prediction made by the model is also explainable and can be used to identify critical residues...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS ONE 2022, Vol.17 (7), p.e0258628
Hauptverfasser: Bui-Thi, Danh, Rivière, Emmanuel, Meysman, Pieter, Laukens, Kris
Format: Report
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Motivation Experiments using different datasets show the improvement of our model compared to other GCN-based methods and a sequence based method, DeepDTA, in predicting compound-protein interactions. Each prediction made by the model is also explainable and can be used to identify critical residues mediating the interaction.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0258628