Predicting compound-protein interaction using hierarchical graph convolutional networks
Motivation Experiments using different datasets show the improvement of our model compared to other GCN-based methods and a sequence based method, DeepDTA, in predicting compound-protein interactions. Each prediction made by the model is also explainable and can be used to identify critical residues...
Gespeichert in:
Veröffentlicht in: | PLoS ONE 2022, Vol.17 (7), p.e0258628 |
---|---|
Hauptverfasser: | , , , |
Format: | Report |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Motivation Experiments using different datasets show the improvement of our model compared to other GCN-based methods and a sequence based method, DeepDTA, in predicting compound-protein interactions. Each prediction made by the model is also explainable and can be used to identify critical residues mediating the interaction. |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0258628 |