Numerical Modeling of Delayed-Neutron Precursor Transport in a Sodium-Cooled Fast Reactor
Methods of determining the efficiency of the system that controls the seal-tightness of fuel-rod cladding and localizes FA with leaky fuel rods in a fast reactor are examined. It is shown that the design procedure has significant limitations. A procedure for numerical modeling of the transport of de...
Gespeichert in:
Veröffentlicht in: | Atomic energy (New York, N.Y.) N.Y.), 2020-08, Vol.128 (4), p.245-250 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Methods of determining the efficiency of the system that controls the seal-tightness of fuel-rod cladding and localizes FA with leaky fuel rods in a fast reactor are examined. It is shown that the design procedure has significant limitations. A procedure for numerical modeling of the transport of delayed-neutron precursors was developed to take account of the special features of liquid-metal coolant flow. A special computational module FV-BN was developed within the framework of the FlowVision software package. The computational results obtained for the concentration distribution of delayed-neutron precursors are transferred into the deterministic transport code TORT in order to obtain the spatial-energy distribution of the neutron flux density in a three-dimensional geometry. The procedure was verified on full-scale reactor problems by simulating the flow-through parts of the upper mixing chamber of the fast reactor. |
---|---|
ISSN: | 1063-4258 1573-8205 |
DOI: | 10.1007/s10512-020-00683-7 |