Comprehensive glycoproteomics shines new light on the complexity and extent of glycosylation in archaea

Glycosylation is one of the most complex posttranslational protein modifications. Its importance has been established not only for eukaryotes but also for a variety of prokaryotic cellular processes, such as biofilm formation, motility, and mating. However, comprehensive glycoproteomic analyses are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS biology 2021-06, Vol.19 (6), p.e3001277-e3001277
Hauptverfasser: Schulze, Stefan, Pfeiffer, Friedhelm, Garcia, Benjamin A, Pohlschroder, Mechthild
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Glycosylation is one of the most complex posttranslational protein modifications. Its importance has been established not only for eukaryotes but also for a variety of prokaryotic cellular processes, such as biofilm formation, motility, and mating. However, comprehensive glycoproteomic analyses are largely missing in prokaryotes. Here, we extend the phenotypic characterization of N -glycosylation pathway mutants in Haloferax volcanii and provide a detailed glycoproteome for this model archaeon through the mass spectrometric analysis of intact glycopeptides. Using in-depth glycoproteomic datasets generated for the wild-type (WT) and mutant strains as well as a reanalysis of datasets within the Archaeal Proteome Project (ArcPP), we identify the largest archaeal glycoproteome described so far. We further show that different N -glycosylation pathways can modify the same glycosites under the same culture conditions. The extent and complexity of the Hfx . volcanii N -glycoproteome revealed here provide new insights into the roles of N -glycosylation in archaeal cell biology.
ISSN:1545-7885
1544-9173
1545-7885
DOI:10.1371/journal.pbio.3001277