Joint embedding VQA model based on dynamic word vector

The existing joint embedding Visual Question Answering models use different combinations of image characterization, text characterization and feature fusion method, but all the existing models use static word vectors for text characterization. However, in the real language environment, the same word...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PeerJ. Computer science 2021-03, Vol.7, p.e353-e353, Article e353
Hauptverfasser: Ma, Zhiyang, Zheng, Wenfeng, Chen, Xiaobing, Yin, Lirong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The existing joint embedding Visual Question Answering models use different combinations of image characterization, text characterization and feature fusion method, but all the existing models use static word vectors for text characterization. However, in the real language environment, the same word may represent different meanings in different contexts, and may also be used as different grammatical components. These differences cannot be effectively expressed by static word vectors, so there may be semantic and grammatical deviations. In order to solve this problem, our article constructs a joint embedding model based on dynamic word vector-none KB-Specific network (N-KBSN) model which is different from commonly used Visual Question Answering models based on static word vectors. The N-KBSN model consists of three main parts: question text and image feature extraction module, self attention and guided attention module, feature fusion and classifier module. Among them, the key parts of N-KBSN model are: image characterization based on Faster R-CNN, text characterization based on ELMo and feature enhancement based on multi-head attention mechanism. The experimental results show that the N-KBSN constructed in our experiment is better than the other 2017-winner (glove) model and 2019-winner (glove) model. The introduction of dynamic word vector improves the accuracy of the overall results.
ISSN:2376-5992
2376-5992
DOI:10.7717/peerj-cs.353