Development of recombinant human granulocyte colony-stimulating factor
The granulocyte colony-stimulating factor (G-CSF) is a hematopoietic cytokine that has important clinical applications for treating neutropenia. Nartograstim is a recombinant variant of human G-CSF. Nartograstim has been produced in Escherichia coli as inclusion bodies (IB) and presents higher stabi...
Gespeichert in:
Veröffentlicht in: | Applied microbiology and biotechnology 2021-01, Vol.105 (1), p.169 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The granulocyte colony-stimulating factor (G-CSF) is a hematopoietic cytokine that has important clinical applications for treating neutropenia. Nartograstim is a recombinant variant of human G-CSF. Nartograstim has been produced in Escherichia coli as inclusion bodies (IB) and presents higher stability and biological activity than the wild type of human G-CSF because of its mutations. We developed a production process of nartograstim in a 10-L bioreactor using auto-induction or chemically defined medium. After cell lysis, centrifugation, IB washing, and IB solubilization, the following three refolding methods were evaluated: diafiltration, dialysis, and direct dilution in two refolding buffers. Western blot and SDS-PAGE confirmed the identity of 18.8-kDa bands as nartograstim in both cultures. The auto-induction medium produced 1.17 g/L and chemically defined medium produced 0.95 g/L. The dilution method yielded the highest percentage of refolding (99%). After refolding, many contaminant proteins precipitated during pH adjustment to 5.2, increasing purity from 50 to 78%. After applying the supernatant to cation exchange chromatography (CEC), nartograstim recovery was low and the purity was 87%. However, when the refolding solution was applied to anion exchange chromatography followed by CEC, 91%-98% purity and 2.2% recovery were obtained. The purification process described in this work can be used to obtain nartograstim with high purity, structural integrity, and the expected biological activity. |
---|---|
ISSN: | 0175-7598 1432-0614 |
DOI: | 10.1007/s00253-020-11014-y |