Anti-neuroinflammatory potential of Tylophora indica

Neuroinflammation is a major risk factor associated with the pathogenesis of neurodegenerative diseases. Conventional non-steroidal anti-inflammatory drugs are prescribed but their long term use is associated with adverse effects. Thus, herbal based medicines are attracting major attraction worldwid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2020-03, Vol.15 (3), p.e0230142
Hauptverfasser: Gupta, Vasudha, Guleri, Rupam, Gupta, Muskan, Kaur, Navdeep, Kaur, Kuldeep, Kumar, Paramdeep, Anand, Manju, Kaur, Gurcharan, Pati, Pratap Kumar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Neuroinflammation is a major risk factor associated with the pathogenesis of neurodegenerative diseases. Conventional non-steroidal anti-inflammatory drugs are prescribed but their long term use is associated with adverse effects. Thus, herbal based medicines are attracting major attraction worldwide as potential therapeutic candidates. Tylophora indica (Burm. f) Merrill is a valuable medicinal plant well known in Ayurvedic practices for its immunomodulatory, anti-oxidant, anti-asthmatic and antirheumatic activities. The present study aimed to elucidate the anti-neuroinflammatory potential of water and hydroalcoholic leaf extracts of micropropagated plants of T. indica using BV-2 microglia activated with lipopolysaccharide as an in vitro model system and development of an efficient reproducible protocol for its in vitro cloning. Non cytotoxic doses of the water and hydroalcoholic extracts (0.2[mu]g/ml and 20[mu]g/ml, respectively) were selected using MTT assay. [alpha]-Tubulin, Iba-1 and inflammatory cascade proteins like NF[kappa]B, AP1 expression was studied using immunostaining to ascertain the anti-neuroinflammatory potential of these extracts. Further, anti-migratory activity was also analyzed by Wound Scratch Assay. Both extracts effectively attenuated lipopolysaccharide induced microglial activation, migration and the production of nitrite via regulation of the expression of NF[kappa]B and AP1 as the possible underlying target molecules. An efficient and reproducible protocol for in vitro cloning of T. indica through multiple shoot proliferation from nodal segments was established on both solid and liquid Murashige and Skoog's (MS) media supplemented with 15[mu]M and 10[mu]M of Benzyl Amino Purine respectively. Regenerated shoots were rooted on both solid and liquid MS media supplemented with Indole-3-butyric acid (5-15[mu]M) and the rooted plantlets were successfully acclimatized and transferred to open field conditions showing 90% survivability. The present study suggests that T. indica may prove to be a potential anti-neuroinflammatory agent and may be further explored as a potential therapeutic candidate for the management of neurodegenerative diseases. Further, the current study will expedite the conservation of T. indica ensuring ample supply of this threatened medicinal plant to fulfill its increasing demand in herbal industry.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0230142