Parallel quorum-sensing system in Vibrio cholerae prevents signal interference inside the host
Author summary Many pathogens use quorum sensing (QS) to regulate virulence gene expression for their survival and adaptation inside hosts. QS depends on the production and detection of chemical signals called autoinducers made endogenously by the bacteria. However, chemicals present in the surround...
Gespeichert in:
Veröffentlicht in: | PLoS pathogens 2020-02, Vol.16 (2), p.e1008313-e1008313, Article 1008313 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Author summary
Many pathogens use quorum sensing (QS) to regulate virulence gene expression for their survival and adaptation inside hosts. QS depends on the production and detection of chemical signals called autoinducers made endogenously by the bacteria. However, chemicals present in the surrounding environment could potentially lead to quorum signal interference, resulting in mis-regulation of virulence factor production and preventing effective host colonization. We show here ethanolamine, a metabolite commonly found inside the mammalian intestine, modulates the activity of one of the QS receptors in Vibrio cholerae, the etiological agent of the disease cholera. Despite the abundance of this common metabolite inside the host, by integrating multiple parallel signal inputs into its QS system, V. cholerae has evolved to maintain QS fidelity and avoids signal interference to allow robust colonization of the host.
Many bacteria use quorum sensing (QS) to regulate virulence factor production in response to changes in population density. QS is mediated through the production, secretion, and detection of signaling molecules called autoinducers (AIs) to modulate population-wide behavioral changes. Four histidine kinases, LuxPQ, CqsS, CqsR and VpsS, have been identified in Vibrio cholerae as QS receptors to activate virulence gene expression at low cell density. Detection of AIs by these receptors leads to virulence gene repression at high cell density. The redundancy among these receptors is puzzling since any one of the four receptors is sufficient to support colonization of V. cholerae in the host small intestine. It is believed that one of the functions of such circuit architecture is to prevent interference on any single QS receptor. However, it is unclear what natural molecules can interfere V. cholerae QS and in what environment interference is detrimental. We show here mutants expressing only CqsR without the other three QS receptors are defective in colonizing the host large intestine. We identified ethanolamine, a common intestinal metabolite that can function as a chemical source of QS interference. Ethanolamine specifically interacts with the ligand-binding CACHE domain of CqsR and induces a premature QS response in V. cholerae mutants expressing only CqsR without the other three QS receptors. The effect of ethanolamine on QS gene expression and host colonization is abolished by mutations that disrupt CqsR signal sensing. V. cholerae defective in p |
---|---|
ISSN: | 1553-7366 1553-7374 1553-7374 |
DOI: | 10.1371/journal.ppat.1008313 |