experimental evaluation of fire history reconstruction using dendrochronology in white oak (Quercus alba)

Dendrochronological analysis of fire scars on tree cross sections has been critically important for understanding historical fire regimes and has influenced forest management practices. Despite its value as a tool for understanding historical ecosystems, tree-ring-based fire history reconstruction h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Canadian journal of forest research 2007-04, Vol.37 (4), p.806-816
Hauptverfasser: McEwan, R.W, Hutchinson, T.F, Ford, R.D, McCarthy, B.C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Dendrochronological analysis of fire scars on tree cross sections has been critically important for understanding historical fire regimes and has influenced forest management practices. Despite its value as a tool for understanding historical ecosystems, tree-ring-based fire history reconstruction has rarely been experimentally evaluated. To examine the efficacy of dendrochronological analysis for detecting fire occurrence in oak forests, we analyzed tree cross sections from sites in which prescribed fires had been recently conducted. The first fire in each treatment unit created a scar in at least one sample, but the overall percentage of samples containing scars in fire years was low (12%). We found that scars were created by 10 of the 15 prescribed fires, and the five undetected fires all occurred in sites where fire had occurred the previous year. Notably, several samples contained scars from known fire-free periods. In summary, our data suggest that tree-ring analysis is a generally effective tool for reconstructing historical fire regimes, although the following points of uncertainty were highlighted: (i) consecutive annual burns may not create fire scars and (ii) wounds that are morphologically indistinguishable from fire scars may originate from nonfire sources.
ISSN:0045-5067
1208-6037
DOI:10.1139/X06-294