How to Make Water Run Uphill
A surface having a spatial gradient in its surface free energy was capable of causing drops of water placed on it to move uphill. This motion was the result of an imbalance in the forces due to surface tension acting on the liquid-solid contact line on the two opposite sides ("uphill" or &...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 1992-06, Vol.256 (5063), p.1539-1541 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A surface having a spatial gradient in its surface free energy was capable of causing drops of water placed on it to move uphill. This motion was the result of an imbalance in the forces due to surface tension acting on the liquid-solid contact line on the two opposite sides ("uphill" or "downhill") of the drop. The required gradient in surface free energy was generated on the surface of a polished silicon wafer by exposing it to the diffusing front of a vapor of decyltrichlorosilane, Cl$_3$Si(CH$_2$)$_9$CH$_3$. The resulting surface displayed a gradient of hydrophobicity (with the contact angle of water changing from 97° to 25°) over a distance of 1 centimeter. When the wafer was tilted from the horizontal plane by 15°, with the hydrophobic end lower than the hydrophilic, and a drop of water (1 to 2 microliters) was placed at the hydrophobic end, the drop moved toward the hydrophilic end with an average velocity of ∼1 to 2 millimeters per second. In order for the drop to move, the hysteresis in contact angle on the surface had to be low (≤ 10°). |
---|---|
ISSN: | 0036-8075 1095-9203 |
DOI: | 10.1126/science.256.5063.1539 |