Prognostic value of mean velocity at the pulmonary artery estimated by cardiovascular magnetic resonance as a prognostic predictor in a cohort of patients with new-onset heart failure with reduced ejection fraction
Background Pulmonary hypertension (PH) conveys a worse prognosis in heart failure (HF), in particular when right ventricular (RV) dysfunction ensues. Cardiovascular magnetic resonance (CMR) non-invasively estimates pulmonary vascular resistance (PVR), which has shown prognostic value in HF. Importan...
Gespeichert in:
Veröffentlicht in: | Journal of cardiovascular magnetic resonance 2020-04, Vol.22 (1), p.28-28, Article 28 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Background Pulmonary hypertension (PH) conveys a worse prognosis in heart failure (HF), in particular when right ventricular (RV) dysfunction ensues. Cardiovascular magnetic resonance (CMR) non-invasively estimates pulmonary vascular resistance (PVR), which has shown prognostic value in HF. Importantly, RV to pulmonary artery (PA) coupling is altered early in HF, before significant rise in PV resistance occurs. The aim of this study was to assess the prognostic value of mean velocity at the pulmonary artery (mvPA), a novel non-invasive parameter determined by CMR, in HF with reduced ejection fraction (HFrEF) with and without associated PH. Methods Prospective inclusion of 238 patients admitted for new-onset HFrEF. MvPA was measured with CMR during index admission. The primary endpoint was defined as a composite of HF readmissions and all-cause mortality. Results During a median follow-up of 25 months, 91 patients presented with the primary endpoint. Optimal cut-off value of mvPA calculated by the receiver operator curve for the prediction of the primary endpoint was 9 cm/s. The primary endpoint occurred more frequently in patients with mvPA |
---|---|
ISSN: | 1097-6647 1532-429X |
DOI: | 10.1186/s12968-020-00621-3 |