Multiobjective Interacting Particle Algorithm for Global Optimization

We develop a population-based algorithm for the optimization of multiple, nonconvex, nondifferentiable, and possibly discontinuous objective functions. The algorithm employs Markov kernels, Hit-and-Run, and Pattern Hit-and-Run for exploration of the solution space and Pareto ordering rules for the s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:INFORMS journal on computing 2014-06, Vol.26 (3), p.500-513
Hauptverfasser: Mete, Huseyin Onur, Zabinsky, Zelda B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We develop a population-based algorithm for the optimization of multiple, nonconvex, nondifferentiable, and possibly discontinuous objective functions. The algorithm employs Markov kernels, Hit-and-Run, and Pattern Hit-and-Run for exploration of the solution space and Pareto ordering rules for the selection of the population and to update the approximate Pareto optimal list. Our multiobjective interacting particle algorithm asymptotically converges to the stationary distribution associated with the Pareto ordering rules. We present numerical benchmark results on test problems.
ISSN:1091-9856
1526-5528
1091-9856
DOI:10.1287/ijoc.2013.0580