Autoencoder-based Ultrasonic NDT of Adhesive Bonds
We present an approach for ultrasonic non-destructive testing of adhesive bonding employing unsupervised machine learning with autoencoders. The models are trained exclusively on the features derived from pulse-echo ultrasonic signals on a specimen with good adhesive bonding and tested on another sp...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present an approach for ultrasonic non-destructive testing of adhesive bonding employing unsupervised machine learning with autoencoders. The models are trained exclusively on the features derived from pulse-echo ultrasonic signals on a specimen with good adhesive bonding and tested on another specimen with artificially added defects. The resulting pseudo-probabilities indicating anomalies are visualized and presented along to the C-scan of the same specimen. As a result, we achieved improved representation of the defects, providing a possibility of their automatic and reliable detection. |
---|---|
DOI: | 10.1109/SENSORS47087.2021.9639864 |