Perovskite Photovoltaics on Roll-To-Roll Coated Ultra-thin Glass as Flexible High-Efficiency Indoor Power Generators
The internet of things revolution requires efficient, easy-to-integrate energy harvesting. Here, we report indoor power generation by flexible perovskite solar cells (PSCs) manufactured on roll-to-roll indium-doped tin oxide (ITO)-coated ultra-thin flexible glass (FG) substrates with notable transmi...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The internet of things revolution requires efficient, easy-to-integrate energy harvesting. Here, we report indoor power generation by flexible perovskite solar cells (PSCs) manufactured on roll-to-roll indium-doped tin oxide (ITO)-coated ultra-thin flexible glass (FG) substrates with notable transmittance (>80%), sheet resistance (13 Ω/square), and bendability, surpassing 1,600 bending procedures at 20.5-mm curvature. Optimized PSCs on FG incorporate a mesoporous scaffold over SnO2 compact layers delivering efficiencies of 20.6% (16.7 μW⋅cm−2 power density) and 22.6% (35.0 μW⋅cm−2) under 200 and 400 lx LED illumination, respectively. These represent, to the best of our knowledge, the highest reported for any indoor flexible solar cell technology, surpassing by a 60%–90% margin the prior best-performing flexible PSCs. Specific powers (W/g) delivered by these lightweight cells are 40%–55% higher than their counterparts on polyethylene terephthalate (PET) films and an order of magnitude greater than those on rigid glass, highlighting the potential of flexible FG-PSCs as a key enabling technology for powering indoor electronics of the future. |
---|---|
DOI: | 10.1016/j.xcrp.2020.100045 |