Fully Printed Flexible Chemiresistors with Tunable Selectivity Based on Gold Nanoparticles
This study presents a method for printing flexible chemiresistors comprising thin film transducers based on cross-linked gold nanoparticles (GNPs). First, interdigitated silver paste electrodes are printed onto polyimide (PI) foil via dispenser printing. Second, coatings of GNPs and dithiol/monothio...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study presents a method for printing flexible chemiresistors comprising thin film transducers based on cross-linked gold nanoparticles (GNPs). First, interdigitated silver paste electrodes are printed onto polyimide (PI) foil via dispenser printing. Second, coatings of GNPs and dithiol/monothiol blends are inkjet-printed onto these electrode structures. 1,9-Nonanedithiol (9DT) is used as cross-linking agent and a variety of monothiols are added to tune the sensors’ chemical selectivity. When dosing these sensors with different analyte vapors (n-octane, toluene, 4-methyl-2-pentanone, 1-butanol, 1-propanol, ethanol, water; concentration range: 25–2000 ppm) they show fully reversible responses with short response and recovery times. The response isotherms follow a first-order Langmuir model, and their initial slopes reveal sensitivities of up to 4.5 × 10−5 ppm−1. Finally, it is demonstrated that arrays of printed sensors can be used to clearly discern analytes of different polarity. |
---|---|
DOI: | 10.3390/chemosensors8040116 |