Reliability of power converters in wind turbines: Exploratory analysis of failure and operating data from a worldwide turbine fleet

In view of the frequent and costly failures of power converters in wind turbines, a large consortium of research institutes and companies has joined forces to investigate the underlying causes and key driving factors of the failures. This paper presents an exploratory statistical analysis of the com...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Fischer, Katharina, Pelka, Karoline, Bartschat, Arne, Tegtmeier, Bernd, Coronado, Diego, Broer, Christian, Wenske, Jan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In view of the frequent and costly failures of power converters in wind turbines, a large consortium of research institutes and companies has joined forces to investigate the underlying causes and key driving factors of the failures. This paper presents an exploratory statistical analysis of the comprehensive field data provided by the project partners. The evaluated dataset covers converter failures recorded from 2003-2017 during almost 7400 operating years of variable-speed wind turbines of different manufacturers and types, operating at onshore and offshore sites in 23 countries. The results include the distribution of failures within the converter system and the comparison of converter failure rates among turbines with different generator-converter concepts, from different manufacturers as well as from different turbine generations. By means of combined analyses of converter-failure data with operating and climate data, conditions promoting failure are identified. In line with the results of a previous, much smaller study of the authors, the present analysis provides further indications against the wide-spread assumption that thermal-cycling induced fatigue is the lifetime-limiting mechanism in the power converters of wind turbines. Instead, the results suggest that humidity and condensation play an important role in the emergence of converter failures in this application.
DOI:10.1109/TPEL.2018.2875005