Entwicklung einer neuen Methode zur Ansteuerung von Ultraschall-Phased Arrays
Ultrasonic linear phased array probes consist of several single elements. By exciting each element at a certain time wave fronts can be tilted, focused or both combined. This is accomplished by a set of delays which is called "focal law". Hence, the shape and the quality of the resulting w...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Dissertation |
Sprache: | ger |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Ultrasonic linear phased array probes consist of several single elements. By exciting each element at a certain time wave fronts can be tilted, focused or both combined. This is accomplished by a set of delays which is called "focal law". Hence, the shape and the quality of the resulting wave front depends significantly on focal law calculation. This state-of-the-art method is based on two simplifications: firstly on the assumption that each single element has identical vibration behaviour, and secondly on the simple geometrical approximation of the signal propagation time. In this work both aspects will be investigate in detail. For characterization of the individual vibration behaviour the most important transducer parts and theirs acoustical properties will be presented. The theoretical view on the inner structure is completed by two measuring methods: scanning acoustic microscopy as well as computed tomography. Furthermore, the effective mechanical displacement of the transducer interface will be analyzed by Laser Doppler vibrometry. Hence, the individual vibration behaviour of the single elements can be compensated which yields an optimized superposition. To investigate the second assumption the 4D-CEFIT-PSS simulation environment has been developed. The combination of CEFIT (cylindric elasto dynamic finite integration technique) and PSS (point source synthesis) considers all effects of wave physics. A comprehensive parametric study shows the effects of geometrical aperture size concerning resulting signals in decided focal points. The differences of wave propagation in the time and frequency domain will be pointed out. Concluding, focal laws were calculated with the geometrical and the simulation based approach. The resulting wave propagation is simulated for selected focal points. The results were compared both ways, qualitatively and quantitatively. Hereby the difference between both methods was distinguishable. The outcome is a method for modified focal law calculation. Both, the consideration of the individual vibration characteristics and the application of the new focal laws result in higher signal-to-noise ratios for linear phased arrays. |
---|