Optimization of multi-layer metallization design for large-area back-contact back-junction solar cells
In this study, a multi-layer metallization concept for high-efficient large-area silicon back-contact back-junction solar cells is investigated. The metallization approach represents an industrial alternative to the well-known edge-to-edge cell interconnection technology, allowing for a decoupling o...
Gespeichert in:
Hauptverfasser: | , , , , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this study, a multi-layer metallization concept for high-efficient large-area silicon back-contact back-junction solar cells is investigated. The metallization approach represents an industrial alternative to the well-known edge-to-edge cell interconnection technology, allowing for a decoupling of the cell metallization from the external contact structure by inserting an intermediate insulation layer. A first proof of principle is shown for an n type back-contact back-junction solar cell with an edge length of 156 mm and evaporated aluminum grid fingers. Furthermore, we present a tool that allows for the design optimization of the contact layout by combining detailed cost of ownership calculations with analytical solar cell simulations. Two back-end process sequences are compared and for both approaches the most cost-effective metallization layout is determined on cell level. Finally, a sensitivity analysis is carried out, revealing the high potential of the investigated back-contact back junction solar cell structures. |
---|---|
DOI: | 10.4229/EUPVSEC20142014-2BO.2.2 |