Generation of buds, swellings, and branches instead of filaments after blocking the cell cycle of Rhizobium meliloti

Inhibition of cell division in rod-shaped bacteria such as Escherichia coli and Bacillus subtilis results in elongation into long filaments many times the length of dividing cells. As a first step in characterizing the Rhizobium meliloti cell division machinery, we tested whether R. meliloti cells c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Bacteriology 1997-04, Vol.179 (7), p.2373-2381
Hauptverfasser: Latch, J.N. (University of Texas Medical School, Houston, TX.), Margolin, W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Inhibition of cell division in rod-shaped bacteria such as Escherichia coli and Bacillus subtilis results in elongation into long filaments many times the length of dividing cells. As a first step in characterizing the Rhizobium meliloti cell division machinery, we tested whether R. meliloti cells could also form long filaments after cell division was blocked. Unexpectedly, DNA-damaging agents, such as mitomycin C and nalidixic acid, caused only limited elongation. Instead, mitomycin C in particular induced a significant proportion of the cells to branch at the poles. Moreover, methods used to inhibit septation, such as FtsZ overproduction and cephalexin treatment, induced growing cells to swell, bud, or branch while increasing in mass, whereas filamentation was not observed. Overproduction of E. coli FtsZ in R. meliloti resulted in the same branched morphology, as did overproduction of R. meliloti FtsZ in Agrobacterium tumefaciens. These results suggest that in these normally rod-shaped species and perhaps others, branching and swelling are default pathways for increasing mass when cell division is blocked
ISSN:0021-9193
1098-5530
1067-8832
DOI:10.1128/jb.179.7.2373-2381.1997