Properties and partial protein sequence of plant annexins

We have examined the characteristics of Ca2+-dependent phospholipid-binding proteins (annexins) in maize (Zea mays L.) coleoptiles and tip-growing pollen tubes of Lilium longiflorum. In maize, there are three such proteins, p35, p33, and p23. Partial sequence analysis reveals that peptides from p35...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant physiology (Bethesda) 1992-07, Vol.99 (3), p.864-871
Hauptverfasser: Blackbourn, H.D. (University of Reading, Reading, UK), Barker, P.J, Huskisson, N.S, Battey, N.H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We have examined the characteristics of Ca2+-dependent phospholipid-binding proteins (annexins) in maize (Zea mays L.) coleoptiles and tip-growing pollen tubes of Lilium longiflorum. In maize, there are three such proteins, p35, p33, and p23. Partial sequence analysis reveals that peptides from p35 and p33 have identity to members of the annexin family of animal proteins and to annexins from tomato. Interestingly, multiple sequence alignments reveal that the domain responsible for Ca2+ binding in animal annexins is not conserved in these plant peptide sequences. Although p33 and p35 share the annexin characteristic of binding to membrane lipid, unlike annexins II and VI they do not associate with detergent-insoluble cytoskeletal proteins or with F-actin from either plants or animals. Immunoblotting with antiserum raised to p33/p35 from maize reveals that cross-reactive polypeptides of 33 to 35 kilodaltons are also present in protein extracts from pollen tubes of L. longiflorum. Immunolocalization at the light microscope level suggests that these proteins are predominantly confined to the nongranular zone at the tube tip, a region rich in secretory vesicles. Our hypothesis that plant annexins mediate exocytotic events is supported by the finding that p23, p33, and p35 bind to these secretory vesicles in a Ca2+-dependent manner
ISSN:0032-0889
1532-2548
DOI:10.1104/pp.99.3.864