Where, why and how? Explaining the low‐temperature range limits of temperate tree species

Attempts at explaining range limits of temperate tree species still rest on correlations with climatic data that lack a physiological justification. Here, we present a synthesis of a multidisciplinary project that offers mechanistic explanations. Employing climatology, biogeography, dendrology, popu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of ecology 2016, Vol.104 (4), p.1076-1088
Hauptverfasser: Körner, Christian, David Basler, Günter Hoch, Chris Kollas, Armando Lenz, Christophe F. Randin, Yann Vitasse, Niklaus E. Zimmermann
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Attempts at explaining range limits of temperate tree species still rest on correlations with climatic data that lack a physiological justification. Here, we present a synthesis of a multidisciplinary project that offers mechanistic explanations. Employing climatology, biogeography, dendrology, population and reproduction biology, stress physiology and phenology, we combine results from in situ elevational (Swiss Alps) and latitudinal (Alps vs. Scandinavia) comparisons, from reciprocal common garden and phytotron studies for eight European broadleaf tree species. We show that unlike for low‐stature plants, tree canopy temperatures can be predicted from weather station data, and that low‐temperature extremes in winter do not explain range limits. At the current low‐temperature range limit, all species recruit well. Transplants revealed that the local environment rather than elevation of seed origin dominates growth and phenology. Tree ring width at the range limit is not related to season length, but to growing season temperature, with no evidence of carbon shortage. Bud break and leaf emergence in adults trees are timed in such a way that the probability of freezing damage is almost zero, with a uniform safety margin across elevations and taxa. More freezing‐resistant species flush earlier than less resistant species. Synthesis: we conclude that the range limits of the examined tree species are set by the interactive influence of freezing resistance in spring, phenology settings, and the time required to mature tissue. Microevolution of spring phenology compromises between demands set by freezing resistance of young, immature tissue and season length requirements related to autumnal tissue maturation.
ISSN:0022-0477
1365-2745