High-resolution record of the Matuyama–Brunhes transition constrains the age of Javanese Homo erectus in the Sangiran dome, Indonesia
A detailed paleomagnetic study conducted in the Sangiran area, Java, has provided a reliable age constraint on hominid fossil-bearing formations. A reverse-to-normal polarity transition marks a 7-m thick section across the Upper Tuff in the Bapang Formation. The transition has three short reversal e...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2011-12, Vol.108 (49), p.19563-19568 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A detailed paleomagnetic study conducted in the Sangiran area, Java, has provided a reliable age constraint on hominid fossil-bearing formations. A reverse-to-normal polarity transition marks a 7-m thick section across the Upper Tuff in the Bapang Formation. The transition has three short reversal episodes and is overlain by a thick normal polarity magnetozone that was fission-track dated to the Brunhes chron. This pattern closely resembles another high-resolution Matuyama–Brunhes (MB) transition record in an Osaka Bay marine core. In the Sangiran sediments, four successive transitional polarity fields lie just below the presumed main MB boundary. Their virtual geomagnetic poles cluster in the western South Pacific, partly overlapping the transitional virtual geomagnetic poles from Hawaiian and Canary Islands’ lavas, which have a mean 40Ar/39Ar age of 776 ± 2 ka. Thus, the polarity transition is unambiguously the MB boundary. A revised correlation of tuff layers in the Bapang Formation reveals that the hominid last occurrence and the tektite level in the Sangiran area are nearly coincident, just below the Upper Middle Tuff, which underlies the MB transition. The stratigraphic relationship of the tektite level to the MB transition in the Sangiran area is consistent with deep-sea core data that show that the meteorite impact preceded the MB reversal by about 12 ka. The MB boundary currently defines the uppermost horizon yielding Homo erectus fossils in the Sangiran area. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.1113106108 |