Genetic linkage map of Coffea canephora: effect of segregation distortion and analysis of recombination rate in male and female meioses
Two complementary segregating plant populations of Coffea canephora were produced from the same clone. One population (DH) comprised 92 doubled haploids derived from female gametes, while the other population (TC) was a test cross consisting of 44 individuals derived from male gametes. Based on the...
Gespeichert in:
Veröffentlicht in: | Genome 2001-08, Vol.44 (4), p.589-596 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Two complementary segregating plant populations of Coffea canephora were produced from the same clone. One population (DH) comprised 92 doubled haploids derived from female gametes, while the other population (TC) was a test cross consisting of 44 individuals derived from male gametes. Based on the DH population, a genetic linkage map comprising 160 loci was constructed. Eleven linkage groups that putatively correspond to the 11 gametic chromosomes of C. canephora were identified. The mapped loci included more than 40 specific sequence-tagged site markers, either single-copy RFLP probes or microsatellites, that could serve as standard landmarks in coffee-genome analyses. Furthermore, comparisons for segregation distortion and recombination frequency between the two populations were performed. Although segregation distortions were observed in both populations, the frequency of loci exhibiting a very pronounced degree of distortion was especially high in the DH population. This observation is consistent with the hypothesis of strong zygotic selection among the DH population. The recombination frequencies in both populations were found to be almost indistinguishable. These results offer evidence in favour of the lack of significant sex differences in recombination in C. canephora. |
---|---|
ISSN: | 0831-2796 1480-3321 |
DOI: | 10.1139/g01-041 |