Groundwater composition near the nickle-copper smelting industry on the Kola Peninsula, central Barents Region (NW Russia and NE Norway)
The chemical composition of 185 groundwater samples collected from two catchments in the extreme NE Norway and NW Russia over the period April 1994 to November 1995 is reported in terms of Ag, Al, As, B, Ba, Be, Bi, Br, Ca, Cd, Cl, Co, Cr, Cu, F, Fe, K, Li, Mg, Mn, Mo, Na, Ni, NO3, P, Pb, PO4, Rb, S...
Gespeichert in:
Veröffentlicht in: | Journal of hydrology (Amsterdam) 1998, Vol.208 (1/2), p.92-107 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The chemical composition of 185 groundwater samples collected from two catchments in the extreme NE Norway and NW Russia over the period April 1994 to November 1995 is reported in terms of Ag, Al, As, B, Ba, Be, Bi, Br, Ca, Cd, Cl, Co, Cr, Cu, F, Fe, K, Li, Mg, Mn, Mo, Na, Ni, NO3, P, Pb, PO4, Rb, S, Sb, Se, Si, SO4, Sr, Th, Ti, Tl, U, V and Zn concentrations (as determined by ICP-MS, ICP-AES and IC), pH and electrical conductance. One catchment (C2) is located in Russia 5 km downwind of the nickel-copper ore smelting industry in Monchegorsk, which is a major SO2 and trace metal emission source, the other (C5) is located in Norway 30 km off-wind from the nickel-copper ore smelter in Nikel and 52 km off-wind from the nickel-copper ore roasting plant of Zapoljarniy, which are also significant emitters of inorganic atmospheric pollutants. Groundwater chemistry mostly reflects the mineralogical composition of the gabbro aquifer in C2 and the Quaternary deposits in C5, although groundwater in C2 also shows signs of incipient contamination from surface waters (heavy metals, sulphate, chloride). Groundwater in C2 appears to have been acidified by S-compounds emitted from Monchegorsk, but the groundwater's capacity to neutralise incoming acidity has not been exhausted. In C5, groundwater has not been acidified to any extent and has a high acid neutralising capacity. This study demonstrates that the geological substrate of a catchment is a fundamental control on how groundwater responds to atmospheric pollution, even if the latter is severe. |
---|---|
ISSN: | 0022-1694 1879-2707 |