Ecotypic mode of regional differentiation caused by restricted gene migration: a case in black cottonwood (Populus trichocarpa) along the Pacific Northwest coast

Genetic differentiation of black cottonwood (Populus balsamifera subsp. trichocarpa (Torr. & A. Gray ex Hook) Brayshaw) across a “no-cottonwood” belt on the coast of central British Columbia (BC), Canada, was examined using data on 3 year height, severity of infection by Valsa sordida Nitschke a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Canadian journal of forest research 2009-03, Vol.39 (3), p.519-526
Hauptverfasser: Xie, Chang-Yi, Ying, Cheng C, Yanchuk, Alvin D, Holowachuk, Diane L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Genetic differentiation of black cottonwood (Populus balsamifera subsp. trichocarpa (Torr. & A. Gray ex Hook) Brayshaw) across a “no-cottonwood” belt on the coast of central British Columbia (BC), Canada, was examined using data on 3 year height, severity of infection by Valsa sordida Nitschke and Melampsora occidentalis H. Jacks., and abnormality of leaf flushing. The data were collected in a common-garden test consisting of 180 provenances of 36 drainages ranging from northern BC to Oregon, USA. The results demonstrated an ecotypic mode, north-south regional differentiation. Valsa sordida and M. occidentalis infected 41% and 89%, respectively, of the trees from the northern region, while 66% showed flushing abnormality. In contrast, only 1% and 27% of their southern counterparts were infected by the same diseases, and 1% had abnormal flushing. Trees from the northern region averaged 87% shorter than those from the south. Regional differentiation accounted for the highest amount of variation observed in all traits, with 60% in 3 year height, 34% in V. sordida, 76% in M. occidentalis, and 50% in abnormal leaf flushing. Regression analysis revealed geographic patterns that essentially reflected regional differentiation along the no-cottonwood belt. The species' distribution biography, ecological characteristics, and life history suggest that restricted gene migration was the main factor responsible for the observed geographic patterns of genetic differentiation.
ISSN:0045-5067
1208-6037
DOI:10.1139/x08-190