Four-dimensional realistic modeling of pancreatic organogenesis

Organogenesis, the process by which organs develop from individual precursor stem cells, requires that the precursor cells proliferate, differentiate, and aggregate to form a functioning structure. This process progresses through changes in 4 dimensions: time and 3 dimensions of space--4D. Experimen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2008-12, Vol.105 (51), p.20374-20379
Hauptverfasser: Setty, Yaki, Cohen, Irun R, Dor, Yuval, Harel, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Organogenesis, the process by which organs develop from individual precursor stem cells, requires that the precursor cells proliferate, differentiate, and aggregate to form a functioning structure. This process progresses through changes in 4 dimensions: time and 3 dimensions of space--4D. Experimental analysis of organogenesis, by its nature, cuts the 4D developmental process into static, 2D histological images or into molecular or cellular markers and interactions with little or no spatial dimensionality and minimal dynamics. Understanding organogenesis requires integration of the piecemeal experimental data into a running, realistic and interactive 4D simulation that allows experimentation and hypothesis testing in silico. Here, we describe a fully executable, interactive, visual model for 4D simulation of organogenic development using the mouse pancreas as a representative case. Execution of the model provided a dynamic description of pancreas development, culminating in a structure that remarkably recapitulated morphologic features seen in the embryonic pancreas. In silico mutations in key signaling molecules resulted in altered patterning of the developing pancreas that were in general agreement with in vivo data. The modeling approach described here thus typifies a useful platform for studying organogenesis as a phenomenon in 4 dimensions.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.0808725105