Identification and Characterization of the Capsular Polysaccharide (K-Antigen) Locus of Porphyromonas gingivalis

Capsular polysaccharides of gram-negative bacteria play an important role in maintaining the structural integrity of the cell in hostile environments and, because of their diversity within a given species, can act as useful taxonomic aids. In order to characterize the genetic locus for capsule biosy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Infection and Immunity 2006, Vol.74 (1), p.449-460
Hauptverfasser: Aduse-Opoku, Joseph, Slaney, Jennifer M, Hashim, Ahmed, Gallagher, Alexandra, Gallagher, Robert P, Rangarajan, Minnie, Boutaga, Khalil, Laine, Marja L, Van Winkelhoff, Arie J, Curtis, Michael A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Capsular polysaccharides of gram-negative bacteria play an important role in maintaining the structural integrity of the cell in hostile environments and, because of their diversity within a given species, can act as useful taxonomic aids. In order to characterize the genetic locus for capsule biosynthesis in the oral gram-negative bacterium Porphyromonas gingivalis, we analyzed the genome of P. gingivalis W83 which revealed two candidate loci at PG0106-PG0120 and PG1135-PG1142 with sufficient coding capacity and appropriate gene functions based on comparisons with capsule-coding loci in other bacteria. Insertion and deletion mutants were prepared at PG0106-PG0120 in P. gingivalis W50--a K1 serotype. Deletion of PG0109-PG0118 and PG0116-PG0120 both yielded mutants which no longer reacted with antisera to K1 serotypes. Restriction fragment length polymorphism analysis of the locus in strains representing all six K-antigen serotypes and K⁻ strains demonstrated significant variation between serotypes and limited conservation within serotypes. In contrast, PG1135-PG1142 was highly conserved in this collection of strains. Sequence analysis of the capsule locus in strain 381 (K⁻ strain) demonstrated synteny with the W83 locus but also significant differences including replacement of PG0109-PG0110 with three unique open reading frames, deletion of PG0112-PG0114, and an internal termination codon within PG0106, each of which could contribute to the absence of capsule expression in this strain. Analysis of the Arg-gingipains in the capsule mutants of strain W50 revealed no significant changes to the glycan modifications of these enzymes, which indicates that the glycosylation apparatus in P. gingivalis is independent of the capsule biosynthetic machinery.
ISSN:0019-9567
1098-5522
DOI:10.1128/IAI.74.1.449-460.2006