Synergy between toxins of Bacillus thuringiensis subsp. israelensis and Bacillus sphaericus

Synergistic interactions among the multiple endotoxins of Bacillus thuringiensis subsp. israelensis de Barjac play an important role in its high toxicity to mosquito larvae and the absence of insecticide resistance in populations treated with this bacterium. A lack of toxin complexity and synergism...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of medical entomology 2004, Vol.41 (5), p.934-941
Hauptverfasser: Wirth, M.C, Jiannino, J.A, Federici, B.A, Walton, W.E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Synergistic interactions among the multiple endotoxins of Bacillus thuringiensis subsp. israelensis de Barjac play an important role in its high toxicity to mosquito larvae and the absence of insecticide resistance in populations treated with this bacterium. A lack of toxin complexity and synergism are the apparent causes of resistance to Bacillus sphaericus Neide in particular Culex field populations. To identify endotoxin combinations of the two Bacillus species that might improve insecticidal activity and manage mosquito resistance to B. sphaericus, we tested their toxins alone and in combination. Most combinations of B. sphaericus and B. t. subsp. israelensis toxins were synergistic and enhanced toxicity relative to B. sphaericus, particularly against Culex quinquefasciatus Say larvae resistant to B. sphaericus and Aedes aegypti (L.), a species poorly susceptible to B. sphaericus. Toxicity also improved against susceptible Cx. quinquefasciatus. For example, when the Cyt1Aa toxin from B. t. subsp. israelensis was added to Bin and Cry toxins, or when native B. t. subsp. israelensis was combined with B. sphaericus, synergism values as high as 883-fold were observed and combinations were 4-59,000-fold more active than B. sphaericus. These data, and previous studies using cytolytic toxins, validate proposed strategies for improving bacterial larvicides by combining B. sphaericus with B. t. subsp. israelensis or by engineering recombinant bacteria that express endotoxins from both strains. These combinations increase both endotoxin complexity and synergistic interactions and thereby enhance activity and help avoid insecticide resistance.
ISSN:0022-2585
1938-2928