Haplotype diversity of preharvest sprouting QTLs in wheat
Preharvest sprouting (PHS) is one of the most important factors affecting wheat production worldwide in environments characterized by rainfall and high humidity at harvest. In such environments, the incorporation of seed dormancy of a limited duration is required to minimize losses associated with P...
Gespeichert in:
Veröffentlicht in: | Genome 2007-02, Vol.50 (2), p.107-118 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Preharvest sprouting (PHS) is one of the most important factors affecting wheat production worldwide in environments characterized by rainfall and high humidity at harvest. In such environments, the incorporation of seed dormancy of a limited duration is required to minimize losses associated with PHS. A global collection of 28 PHS-resistant and -susceptible wheat germplasm was characterized with microsatellite markers flanking the genomic regions associated with PHS-resistance quantitative trait loci (QTLs), particularly on chromosomes 3D and 4A. The genetic diversity analysis revealed 380 alleles at 54 microsatellite loci, with an average of 7.0 alleles per locus, among the 28 wheat genotypes. Gower's genetic similarity values among all possible pairs of genotypes varied from 0.44 to 0.97, indicating that there is considerable diversity in the PHS germplasm evaluated. Cluster and principal coordinates analysis of genetic similarity estimates differentiated the genotypes into groups, according to their source of PHS resistance. Three major SSR haplotypes were observed on chromosome 4AL, designated RL4137-type allele, Aus1408-type allele, and synthetic-hexaploid-type allele. The RL4137-type allele was prevalent in Canadian cultivars, mostly in cluster 6, followed by the Aus1408-type and its derivatives in clusters 4 and 5. The Syn36 and Syn37 alleles on chromosome 4AL were rare. On chromosome 3DL, the SSRs haplotypes derived from Syn36 and Syn37 were also rare, and proved unique to the Aegilops tauschii - derived synthetic hexaploids. They are therefore likely carrying resistance genes different from those previously reported. Based on genetic relationships, PHS resistance might be improved by selecting parental genotypes from different clusters. |
---|---|
ISSN: | 0831-2796 1480-3321 |
DOI: | 10.1139/g06-142 |