Elucidation of a Complete Kinetic Mechanism for a Mammalian Hydroxysteroid Dehydrogenase (HSD) and Identification of All Enzyme Forms on the Reaction Coordinate: THE EXAMPLE OF RAT LIVER 3α-HSD (AKR1C9)

Hydroxysteroid dehydrogenases (HSDs) are essential for the biosynthesis and mechanism of action of all steroid hormones. We report the complete kinetic mechanism of a mammalian HSD using rat 3α-HSD of the aldo-keto reductase superfamily (AKR1C9) with the substrate pairs androstane-3,17-dione and NAD...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2007-11, Vol.282 (46), p.33484-33493
Hauptverfasser: Cooper, William C, Jin, Yi, Penning, Trevor M
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hydroxysteroid dehydrogenases (HSDs) are essential for the biosynthesis and mechanism of action of all steroid hormones. We report the complete kinetic mechanism of a mammalian HSD using rat 3α-HSD of the aldo-keto reductase superfamily (AKR1C9) with the substrate pairs androstane-3,17-dione and NADPH (reduction) and androsterone and NADP⁺ (oxidation). Steady-state, transient state kinetics, and kinetic isotope effects reconciled the ordered bi-bi mechanism, which contained 9 enzyme forms and permitted the estimation of 16 kinetic constants. In both reactions, loose association of the NADP(H) was followed by two conformational changes, which increased cofactor affinity by >86-fold. For androstane-3,17-dione reduction, the release of NADP⁺ controlled kcat, whereas the chemical event also contributed to this term. kcat was insensitive to [²H]NADPH, whereas Dkcat/Km and the Dklim (ratio of the maximum rates of single turnover) were 1.06 and 2.06, respectively. Under multiple turnover conditions partial burst kinetics were observed. For androsterone oxidation, the rate of NADPH release dominated kcat, whereas the rates of the chemical event and the release of androstane-3,17-dione were 50-fold greater. Under multiple turnover conditions full burst kinetics were observed. Although the internal equilibrium constant favored oxidation, the overall Keq favored reduction. The kinetic Haldane and free energy diagram confirmed that Keq was governed by ligand binding terms that favored the reduction reactants. Thus, HSDs in the aldo-keto reductase superfamily thermodynamically favor ketosteroid reduction.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M703414200