Simultaneous evolution of competitiveness and defense: induced switchingin Arabis drummondii
Optimality theory for plant defense against herbivores predicts an evolutionary tradeoff between the abilities to compete and defend. We tested this hypothesis by studying the effects of genetic variation in competitiveness on defense expression. Two closely related and differentially competitive co...
Gespeichert in:
Veröffentlicht in: | Plant ecology 2006, Vol.184 (2), p.245-257 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Optimality theory for plant defense against herbivores predicts an evolutionary tradeoff between the abilities to compete and defend. We tested this hypothesis by studying the effects of genetic variation in competitiveness on defense expression. Two closely related and differentially competitive congeners were compared for levels of resistance, tolerance, and secondary metabolite production. In a growth room experiment, plants of Arabis drummondii and A. holboellii were grown in the presence and absence of the common bunch grass Boutelloua gracilis, the specialist herbivore Plutella xylostella, and generalist herbivore Trichoplusia ni. Tolerance to competition, measured as growth next to the grass relative to controls in the absence of grass, was greatest for A. drummondii, the species that occurred in communities with higher densities of inter-specific neighbors. Measures of defense (resistance to herbivores, tolerance to damage, and concentrations of glucosinolates) varied inconsistently between the Arabis, species, depending on type of herbivore, competition level, and type of defense. The better competitor A. drummondii was more resistant to specialist herbivores, as in the field, and exhibited greater herbivore- and competition-induced changes in glucosinolate profiles. Further, when plants of A. drummondii were fed upon in competitive environments, the induced glucosinolate response was reduced while tolerance levels increased in an apparent switching of induced strategies. We suggest that competitiveness and defense responses are sometimes positively correlated because some defensive traits also function as competitive traits. A competitive function for defenses may also explain why defenses were affected by competition. Alternatively, since the induced response did not increase estimates of total glucosinolate content significantly, minimal defense costs might also allow the simultaneous evolution of competitiveness and defense. Finally, when faced with both herbivory and competition, some competitive species, such as A. drummondii, may switch to growth-based rather than toxin-based strategies as recent theoretical models predict. |
---|---|
ISSN: | 1385-0237 1573-5052 |