Nuclease-Resistant Single-Stranded DNA Controls for Nucleic Acid Amplification Assays

Molecular diagnostic tests based on the PCR or alternative nucleic acid amplification technologies are commonly used for pathogen screening at blood drawing centers. Contrived process surveillance using test-specific external and internal controls is critical for the efficient leverage of PCR power....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Clinical Microbiology 2007-08, Vol.45 (8), p.2570-2574
Hauptverfasser: Gotsch, Antje, Schubert, Andreas, Bombis, Armin, Wiedmann, Michael, Zauke, Michael, Schorling, Stefan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Molecular diagnostic tests based on the PCR or alternative nucleic acid amplification technologies are commonly used for pathogen screening at blood drawing centers. Contrived process surveillance using test-specific external and internal controls is critical for the efficient leverage of PCR power. We describe here novel control constructs for use in nucleic acid amplification assays for pathogens with a single-stranded DNA genome, e.g., parvovirus B19. These controls are derived from a deletion mutant of the filamentous phage fd-tet, fKN16, and consist of single-stranded DNA packaged in a protein coat. They are essentially noninfectious to Escherichia coli and highly resistant to nuclease degradation. fKN16 based controls can be readily manufactured and highly purified. Despite their confirmed filamentous morphology, they can be precisely and accurately diluted over a wide range. Stability studies reveal that the novel control constructs are highly resistant to temperature stress, regardless of whether they are tested as concentrated stocks in storage buffer or diluted in buffer or human plasma. Real-time amplification curves derived from recombinant control constructs containing a parvovirus B19 specific sequence fragment match those derived from native virus. In summary, our data demonstrate the feasibility of novel nuclease-resistant single-stranded DNA controls as surrogates for parvovirus B19 and their applicability in routine molecular diagnostics.
ISSN:0095-1137
1098-660X
1098-5530
DOI:10.1128/JCM.00647-07