Characterization of Z-DNA as a nucleosome-boundary element in yeast Saccharomyces cerevisiae

In this article, the effect of a d(CG) DNA dinucleotide repeat sequence on RNA polymerase II transcription is examined in yeast Saccharomyces cerevisiae. Our previous report shows that a d(CG)n dinucleotide repeat sequence located proximally upstream of the TATA box enhances transcription from a min...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2007-02, Vol.104 (7), p.2229-2234
Hauptverfasser: Wong, Ben, Chen, Shuai, Kwon, Jin-Ah, Rich, Alexander
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article, the effect of a d(CG) DNA dinucleotide repeat sequence on RNA polymerase II transcription is examined in yeast Saccharomyces cerevisiae. Our previous report shows that a d(CG)n dinucleotide repeat sequence located proximally upstream of the TATA box enhances transcription from a minimal CYC1 promoter in a manner that depends on its surrounding negative supercoiling. Here, we demonstrate that the d(CG)₉ repeat sequence stimulates gene activity by forming a Z-DNA secondary structure. Furthermore, the extent of transcriptional enhancement by Z-DNA is promoter-specific and determined by its separation distance relative to the TATA box. The stimulatory effect exerted by promoter proximal Z-DNA is not affected by helical phasing relative to the TATA box, suggesting that Z-DNA effects transcription without interacting with the general transcription machinery by looping-out the intervening DNA. A nucleosome-scanning assay reveals that the d(CG)₉ repeat sequence in the Z conformation blocks nucleosome formation, and it is found in the linker DNA with two flanking nucleosomes. This result suggests that Z-DNA formation proximally upstream of a promoter is sufficient to demarcate the boundaries of its neighboring nucleosomes, which produces transcriptionally favorable locations for the TATA box near the nucleosomal DNA-entry site and at dyad positions on the nucleosome. These findings suggest that Z-DNA formation in chromatin is a part of the "genomic code" for nucleosome positioning in vivo.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.0611447104