On generalized Robertson--Walker spacetimes satisfying some curvature condition

We give necessary and sufficient conditions for warped product manifolds (M,g), of dimension \geqslant 4, with 1-dimensional base, and in particular, for generalized Robertson--Walker spacetimes, to satisfy some generalized Einstein metric condition. Namely, the difference tensor R . C - C . R, form...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Turkish journal of mathematics 2014-01
Hauptverfasser: ARSLAN, Kadri, DESZCZ, Ryszard, EZENTAS, Ridvan, HOTLOS, Marian, MURATHAN, Cengizhan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We give necessary and sufficient conditions for warped product manifolds (M,g), of dimension \geqslant 4, with 1-dimensional base, and in particular, for generalized Robertson--Walker spacetimes, to satisfy some generalized Einstein metric condition. Namely, the difference tensor R . C - C . R, formed from the curvature tensor R and the Weyl conformal curvature tensor C, is expressed by the Tachibana tensor Q(S,R) formed from the Ricci tensor S and R. We also construct suitable examples of such manifolds. They are quasi-Einstein, i.e. at every point of M rank (S - a g) \leqslant 1, for some a \in R, or non-quasi-Einstein.
ISSN:1303-6149
1300-0098
1303-6149
DOI:10.3906/mat-1304-3