On generalized Robertson--Walker spacetimes satisfying some curvature condition
We give necessary and sufficient conditions for warped product manifolds (M,g), of dimension \geqslant 4, with 1-dimensional base, and in particular, for generalized Robertson--Walker spacetimes, to satisfy some generalized Einstein metric condition. Namely, the difference tensor R . C - C . R, form...
Gespeichert in:
Veröffentlicht in: | Turkish journal of mathematics 2014-01 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We give necessary and sufficient conditions for warped product manifolds (M,g), of dimension \geqslant 4, with 1-dimensional base, and in particular, for generalized Robertson--Walker spacetimes, to satisfy some generalized Einstein metric condition. Namely, the difference tensor R . C - C . R, formed from the curvature tensor R and the Weyl conformal curvature tensor C, is expressed by the Tachibana tensor Q(S,R) formed from the Ricci tensor S and R. We also construct suitable examples of such manifolds. They are quasi-Einstein, i.e. at every point of M rank (S - a g) \leqslant 1, for some a \in R, or non-quasi-Einstein. |
---|---|
ISSN: | 1303-6149 1300-0098 1303-6149 |
DOI: | 10.3906/mat-1304-3 |