An Algorithm Approach for the Analysis of Urban Land-UseCover Logic Filters

Accurate classification of land-use/cover based on remotely sensed data is important for interpreters who analyze time or event-based change on certain areas. Any method that has user flexibility on area selection provides great simplicity during analysis, since the analyzer may need to work on a sp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of environment and geoinformatics (Online) 2014-03
Hauptverfasser: Kaya, Sinasi, Pekin, Fikret, Seker, Dursun Zafer, Tanik“, Aysegul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Accurate classification of land-use/cover based on remotely sensed data is important for interpreters who analyze time or event-based change on certain areas. Any method that has user flexibility on area selection provides great simplicity during analysis, since the analyzer may need to work on a specific area of interest instead of dealing with the entire remotely sensed data. The objectives of the paper are to develop an automation algorithm using Matlab & Simulink on user selected areas, to filter V-I-S (Vegetation, Impervious, Soil) components using the algorithm, to analyze the components according to upper and lower threshold values based on each band histogram, and finally to obtain land-use/cover map combining the V-I-S components. LANDSAT 5TM satellite data covering Istanbul and Izmit regions are utilized, and 4, 3, 2 (RGB) band combination is selected to fulfill the aims of the study. These referred bands are normalized, and V-I-S components of each band are determined. This methodology that uses Matlab & Simulink program is equally successful like the unsupervised and supervised methods. Practices with these methods that lead to qualitative and quantitative assessments of selected urban areas will further provide important spatial information and data especially to the urban planners and decision-makers
ISSN:2148-9173
2148-9173