Gene cloning and characterization of a Bacillus vietnamensis metalloprotease

A Bacillus vietnamensis metalloprotease (BVMP) with high affinity toward collagen was isolated and purified from the culture supernatant of Bacillus vietnamensis 11-4 occurring in Vietnamese fish sauces. The BVMP gene was cloned and its nucleotide and coded amino acid sequences determined. BVMP cons...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioscience, biotechnology, and biochemistry biotechnology, and biochemistry, 2004-07, Vol.68 (7), p.1533-1540
Hauptverfasser: Kim, M. (Tokyo Univ. of Agriculture (Japan)), Nishiyama, Y, Mura, K, Tokue, C, Arai, S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A Bacillus vietnamensis metalloprotease (BVMP) with high affinity toward collagen was isolated and purified from the culture supernatant of Bacillus vietnamensis 11-4 occurring in Vietnamese fish sauces. The BVMP gene was cloned and its nucleotide and coded amino acid sequences determined. BVMP consists of 547 amino acid residues, with the zinc-binding sites conserved hi common metalloproteases. It shares 57% amino acid identity with thermolysin originating from Bacillus thermoproteolyticus. The three-dimensional structure of BVMP was deduced by computer-aided modeling with the use of the known three-dimensional thermolysin structure as a template. Like thermolysin, BVMP cleaved the oxidized insulin B-chain at the peptide bonds involving the N-terminal sides of hydropbobic and aromatic amino acids. BVMP also showed high hydrolytic activity toward gelatin, collagen, casein, and elastin, especially toward the skeletal proteins at increased NaCl concentration. The high activity was found to be due to enhanced affinity to the substrates. Kinetical data on BVMP indicated that the Km values for the hydrolysis of Cbz-GPGGPA as a collagen model decreased as the concentration of added NaCl increased. Some contribution of this enzyme during the aging of fish sauces at high salt concentrations can thus be expected.
ISSN:0916-8451
1347-6947
DOI:10.1271/bbb.68.1533