High Level Model of IEEE 802.15.3c Standard and Implementation of a Suitable FFT on ASIC

Självständigt arbete på avancerad nivå (masterexamen) 20 poäng / 30 hp A high level model of HSIPHY mode of IEEE 802.15.3c standard has been constructedin Matlab to optimize the wordlength to achieve a specific bit error rate (BER) depending on the application, and later an FFT has been implemented...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ahmed Tanvir 1985- , Linköpings universitet, Elektroniksystem, Ahmed Tanvir 1985-, Lköpping University, Electronics System
Format: Web Resource
Sprache:eng ; swe
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Självständigt arbete på avancerad nivå (masterexamen) 20 poäng / 30 hp A high level model of HSIPHY mode of IEEE 802.15.3c standard has been constructedin Matlab to optimize the wordlength to achieve a specific bit error rate (BER) depending on the application, and later an FFT has been implemented for different wordlengths depending on the applications. The hardware cost and power is proportional to wordlength. However, the main objective of this thesis has been to implement a low power, low area cost FFT for this standard. For that the whole system has been modeled in Matlab and the signal to noise ratio (SNR) and wordlength of the system have been studied to achieve an acceptable BER. Later an FFT has been implemented on 65nm ASIC for a wordlength of 8, 12 and 16 bits. For the implementation, a Radix-8 algorithm with eight parallel samples has been adopted. That reduce the area and the power consumption significantly compared to other algorithms and architectures. Moreover, a simple control has been used for this implementation. Voltage scaling has been done to reduce thepower. The EDA synthesis result shows that for 16bit wordlength, the FFT has 2.64 GS/s throughput, it takes 1.439 mm 2 area on the chip and consume 61.51mW power. A high level model of HSIPHY mode of IEEE 802.15.3c standard has been constructedin Matlab to optimize the wordlength to achieve a specific bit error rate (BER) depending on the application, and later an FFT has been implemented for different wordlengths depending on the applications. The hardware cost and power is proportional to wordlength. However, the main objective of this thesis has been to implement a low power, low area cost FFT for this standard. For that the whole system has been modeled in Matlab and the signal to noise ratio (SNR) and wordlength of the system have been studied to achieve an acceptable BER. Later an FFT has been implemented on 65nm ASIC for a wordlength of 8, 12 and 16 bits. For the implementation, a Radix-8 algorithm with eight parallel samples has been adopted. That reduce the area and the power consumption significantly compared to other algorithms and architectures. Moreover, a simple control has been used for this implementation. Voltage scaling has been done to reduce thepower. The EDA synthesis result shows that for 16bit wordlength, the FFT has 2.64 GS/s throughput, it takes 1.439 mm 2 area on the chip and consume 61.51mW power. Självständigt arbete på avancerad nivå (masterexamen) 20 poäng