Trita-CHE-Report

Atom transfer radical polymerization (ATRP) is one of the most commonly employed techniques for controlled radical polymerization. ATRP has great potential for the development of new materials due to the ability to control molecular weight and polymer architecture. To fully utilize the potential of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bergenudd Helena 1978- , KTH, Kärnkemi, Bergenudd Helena 1978-, KTH, Nuclear Chemistry
Format: Dissertation
Sprache:eng ; swe
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Atom transfer radical polymerization (ATRP) is one of the most commonly employed techniques for controlled radical polymerization. ATRP has great potential for the development of new materials due to the ability to control molecular weight and polymer architecture. To fully utilize the potential of ATRP as polymerization technique, the mechanism and the dynamics of the ATRP equilibrium must be well understood. In this thesis, various aspects of the ATRP process are explored through both laboratory experiments and computer modeling. Solvent effects, the limit of control and the use of iron as the mediator have been investigated. It was shown for copper mediated ATRP that the redox properties of the mediator and the polymerization properties were significantly affected by the solvent. As expected, the apparent rate constant ( k p app ) increased with increasing activity of the mediator, but an upper limit was reached, where after k p app was practically independent of the mediator potential. The degree of control deteriorated as the limit was approached. In the simulations, which were based on the thermodynamic properties of the ATRP equilibrium, the same trend of increasing k p app with increasing mediator activity was seen and a maximum was also reached. The simulation results could be used to describe the limit of control. The maximum equilibrium constant for controlled ATRP was correlated to the propagation rate constant, which enables the design of controlled ATRP systems. Using iron compounds instead of copper compounds as mediators in ATRP is attractive from environmental aspects. Two systems with iron were investigated. Firstly, iron/EDTA was investigated as mediator as its redox properties are within a suitable range for controlled ATRP. The polymerization of styrene was heterogeneous, where the rate limiting step is the adsorption of the dormant species to the mediator surface. The polymerizations were not controlled and it is possible that they had some cationic character. In the second iron system, the intention was to investigate how different ligands affect the properties of an ATRP system with iron. Due to competitive coordination of the solvent, DMF, the redox and polymeri­zation properties were not significantly affected by the ligands. The differences between normal and reverse ATRP of MMA, such as the degree of control, were the result of different Fe III speciation in the two systems. QC 20110406 Härtill 4 uppsatser Diss. (sammanfattning)