IEEE Transactions on Wireless Communications
A simple structure to exploit both long-term and partial short-term channel state information at the transmitter (CSIT) over a family of correlated multiple-antenna channels is proposed. Partial short-term CSIT in the form of a weighting matrix is combined with a unitary transformation based on the...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Artikel |
Sprache: | eng ; swe |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A simple structure to exploit both long-term and partial short-term channel state information at the transmitter (CSIT) over a family of correlated multiple-antenna channels is proposed. Partial short-term CSIT in the form of a weighting matrix is combined with a unitary transformation based on the long-term channel statistics. The heavily quantized feedback link is directly optimized to maximize the expected achievable rate under different power constraints, using vector quantization and convex optimization techniques on a sample channel distribution. Robustness against errors in the feedback link is also pursued with tools in channel optimized vector quantization. Simulations indicate the benefits of the proposed scheme.
©2009 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.Tùng T. Kim, Mats Bengtsson, Erik G. Larsson and Mikael Skoglund, Combining Long-Term and Low-Rate Short-Term Channel State Information over Correlated MIMO Channels, 2008, IEEE Transactions on Wireless Communications, (7), 7, 2409-2414.http://dx.doi.org/10.1109/TWC.2008.060989
Published
A simple structure to exploit both long-term and partial short-term channel state information at the transmitter (CSIT) over a family of correlated multiple-antenna channels is proposed. Partial short-term CSIT in the form of a weighting matrix is combined with a unitary transformation based on the long-term channel statistics. The heavily quantized feedback link is directly optimized to maximize the expected achievable rate under different power constraints, using vector quantization and convex optimization techniques on a sample channel distribution. Robustness against errors in the feedback link is also pursued with tools in channel optimized vector quantization. Simulations indicate the benefits of the proposed scheme.
©2009 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.Tùng T. Kim, Mats Bengtsson, Erik G. Larsson and Mikael Skoglund, Combining |
---|