Rekursiv blokkoppdatering av Isingmodellen
I denne rapporten sammenligner vi tre varianter av Markov Chain Monte Carlo (MCMC) - simulering av Isingmodellen. Vi sammenligner enkeltnode-oppdatering, naiv blokkoppdatering og rekursiv blokkoppdatering. Vi begynner med å gi en generell introduksjon til markovfelt og Isingmodellen. Deretter viser...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Web Resource |
Sprache: | eng ; nor ; swe |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | I denne rapporten sammenligner vi tre varianter av Markov Chain Monte Carlo (MCMC) - simulering av Isingmodellen. Vi sammenligner enkeltnode-oppdatering, naiv blokkoppdatering og rekursiv blokkoppdatering. Vi begynner med å gi en generell introduksjon til markovfelt og Isingmodellen. Deretter viser vi det teoretiske fundamentet som MCMC-metoder hviler på. Etter det gir vi en teoretisk introduksjon til enkeltnode-oppdatering. Så gir vi en innføring i naiv blokkoppdatering som er den tradisjonelle metoden å utføre blokkoppdatering på. Deretter gir vi en tilsvarende innføring i en nylig foreslått metode for å gjennomføre blokkoppdatering, nemlig rekursiv blokkoppdatering. Blokkoppdatering er en metode som har vist seg nyttig med hensyn på miksing når vi simulerer. Med det menes at blokkoppdatering har vist seg nyttig i forhold til å utforske utfallsrommet til fordelingen vi er interessert i med færre iterasjoner enn enkeltnode-oppdatering. Problemet med naiv blokkoppdatering er imidlertid at vi raskt får en høy beregningsmengde ved at hver iterasjon tar veldig lang tid. Vi prøver også ut rekursiv blokkoppdatering. Denne tar sikte på å redusere beregningsmengden for hver iterasjon når vi utfører blokkoppdatering på et markovfelt. Vi viser så simuleringsalgoritmer og resultater. Vi har simulert Isingmodellen med enkeltnode-oppdatering, naiv blokkoppdatering og rekursiv blokkoppdatering. Det vi sammenligner er antall iterasjoner før markovfeltet konvergerer og spesielt beregningstiden pr iterasjon. Vi viser at beregningsmengden pr iterasjon øker med 91000 ganger med naiv blokkoppdatering dersom vi går fra en 3 × 3 blokk til en 5 × 5 blokk. Tilsvarende tall for rekursiv blokkoppdatering er en økning på 83 ganger fra en 3 × 3 blokk til en 5 × 5 blokk. Vi sammenligner også tiden det tar før Isingmodellen konvergerer. Når vi benytter naiv blokkoppdatering finner vi at Isingmodellen bruker 15 sekunder på å konvergere med en 3 × 3 blokk, 910 sekunder på å konvergere med en 4×4 blokk og 182000 sekunder med en 5×5 blokk. Tilsvarende tall for rekursiv blokkoppdatering er 3.74 sekunder for en 3 × 3 blokk, 72 sekunder for en 4 × 4 blokk og 141.2 sekunder for en 5×5 blokk. Når vi benytter enkeltnode-oppdatering bruker feltet 6.6 sekunder på å konvergere.
I denne rapporten sammenligner vi tre varianter av Markov Chain Monte Carlo (MCMC) - simulering av Isingmodellen. Vi sammenligner enkeltnode-oppdatering, naiv blokkoppdatering og rekursiv blokkoppdatering. Vi begynner med å |
---|