Evaluation of an Interphase Element using Explicit Finite Element Analysis

Självständigt arbete på grundnivå (kandidatexamen) 15 poäng / 22,5 hp A research group at University of Skövde has developed an interphase element for implementation in the commercial FE-software Abaqus. The element is using the Tvergaard & Hutchinson cohesive law and is implemented in Abaqus Ex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Svensson Daniel 1982- , Högskolan i Skövde, Institutionen för teknik och samhälle, Walander Tomas 1986- , Högskolan i Skövde, Institutionen för teknik och samhälle, Svensson Daniel 1982-, The College in Skövde, Department of Technology and Society, Walander Tomas 1986-, The College in Skövde, Department of Technology and Society
Format: Web Resource
Sprache:eng ; swe
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Självständigt arbete på grundnivå (kandidatexamen) 15 poäng / 22,5 hp A research group at University of Skövde has developed an interphase element for implementation in the commercial FE-software Abaqus. The element is using the Tvergaard & Hutchinson cohesive law and is implemented in Abaqus Explicit version 6.7 using the VUEL subroutine. This bachelor degree project is referring to evaluate the interphase element and also highlight problems with the element. The behavior of the interphase element is evaluated in mode I using Double Cantilever Beam (DCB)-specimens and in mode II using End Notch Flexure (ENF)-specimens. The results from the simulations are compared and validated to an analytical solution. FE-simulations performed with the interphase element show very good agreement with theory when using DCB- or ENF-specimens. The only exception is when an ENF-specimen has distorted elements. When using explicit finite element software the critical time step is of great importance for the results of the analyses. If a too long time step is used, the simulation will fail to complete or complete with errors. A feasible equation for predicting the critical time step for the interphase element has been developed by the research group and the reliability of this equation is evaluated. The result from simulations shows an excellent agreement with the equation when the interphase element governs the critical time step. However when the adherends governs the critical time step the equation gives a time step that is too large. A modification of this equation is suggested. A research group at University of Skövde has developed an interphase element for implementation in the commercial FE-software Abaqus. The element is using the Tvergaard & Hutchinson cohesive law and is implemented in Abaqus Explicit version 6.7 using the VUEL subroutine. This bachelor degree project is referring to evaluate the interphase element and also highlight problems with the element. The behavior of the interphase element is evaluated in mode I using Double Cantilever Beam (DCB)-specimens and in mode II using End Notch Flexure (ENF)-specimens. The results from the simulations are compared and validated to an analytical solution. FE-simulations performed with the interphase element show very good agreement with theory when using DCB- or ENF-specimens. The only exception is when an ENF-specimen has distorted elements. When using explicit finite element software the critical time step is of g